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THIN DOMAINS WITH EXTREMELY HIGH OSCILLATORY BOUNDARIES

JOSÉ M. ARRIETA∗,† AND MARCONE C. PEREIRA‡

Abstract. In this paper we analyze the behavior of solutions of the Neumann problem posed in a thin
domain of the type Rε = {(x1, x2) ∈ R2 | x1 ∈ (0, 1), − ε b(x1) < x2 < εG(x1, x1/εα)} with α > 1 and

ε > 0, defined by smooth functions b(x) and G(x, y), where the function G is supposed to be l(x)-periodic
in the second variable y. The condition α > 1 implies that the upper boundary of this thin domain presents

a very high oscillatory behavior. Indeed, we have that the order of its oscillations is larger than the order

of the amplitude and height of Rε given by the small parameter ε. We also consider more general and
complicated geometries for thin domains which are not given as the graph of certain smooth functions, but

rather more comb-like domains.

1. Introduction

In this paper, we analyze the behavior of the solutions of the Laplace equation with homogeneous Neumann
boundary conditions 

−∆wε + wε = hε in Rε

∂wε

∂N ε
= 0 on ∂Rε

(1.1)

where N ε is the unit outward normal to ∂Rε and hε ∈ L2(Rε). The domain Rε is a two dimensional thin
domain which presents a highly oscillatory behavior at the boundary. We will be able to consider two
different types of thin domains, which will be clearly defined in Section 2. To make the ideas clear we will
refer in this introduction to the first type: assume Rε is given as the region between two functions, that is,

Rε = {(x1, x2) ∈ R2 | x1 ∈ (0, 1), −ε b(x1) < x2 < εGε(x1)} (1.2)

where b(·) and Gε(·) are functions satisfying 0 < b0 < b(·) < b1, 0 ≤ Gε(·) ≤ G1 for some fixed positive
constants b0, b1 and G1, independent of ε > 0. Here, the function b, independent of ε, defines the lower
boundary of the thin domain, and the function Gε, dependent of ε, the upper boundary of Rε. We will allow
Gε to present oscillations whose amplitude is larger than the order of compression of the thin domain. This
is expressed by assuming that

Gε(x) = G(x, x/εα), (1.3)
for some positive constant α > 1. The function G : (0, 1) × R → R is a positive smooth function, with
y → G(x, y) periodic in y for fixed x with period l(x).

Let us observe that our assumptions includes the case where the function Gε presents a purely periodic
behavior, for instance, Gε(x) = 2 + sin(x/εα). But it also considers the case where the function Gε defines
a thin domain where the oscillations period, the amplitude and the profile vary with respect to x ∈ (0, 1).
The Figure 1 and 2 below illustrate kinds of thin domains that we are considering here.

Since the domain Rε is thin, approaching the interval (0, 1), it is reasonable to expect that the family of
solutions will converge to a function of just one variable and that this function will satisfy certain elliptic
equation in one dimension with some boundary conditions.
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Figure 1. A thin domain with variable period, amplitude and profile.

Figure 2. A comb-like thin domain.

It is known that if the domain does not present oscillations, that isGε(x) = G(x), with 0 < G0 ≤ G(·) ≤ G1

and b(·) ≡ 0 the 1-dimensional limiting problem is given by−
1

G(x)

(
G(x)wx

)
x

+ w = h, in (0, 1),

wx(0) = wx(1) = 0
(1.4)

see for instance [10, 12]. Also, if we consider b ≡ 0, Gε(x) = G(x, x/εα) for some 0 ≤ α < 1, and if we
assume that Gε(·) → m(·) w − L2(0, 1) and 1

Gε(·) → k(·) w − L2(0, 1) (observe that m(x)k(x) ≥ 1 a.e.
and in general it is not true that m(x)k(x) ≡ 1), then the limit problem is−

1
m(x)

(
1

k(x)
wx

)
x

+ w = h, in (0, 1)

wx(0) = wx(1) = 0

see [2] for details. Note that this case contains the previous one since we can recover the problem (1.4)
assuming α = 0.

Recently, we consider in [4, 5] a class of oscillating thin domain that cover the case α = 1 with constant
period l. Observe that this situation is very resonant since the height of the domain, the amplitude of the
oscillations at the boundary and the period of the oscillations are of the same order ε. The limit problem
for this case is −

1
s(x)

(r(x)wx)x + w = h(x), x ∈ (0, 1)

w′(0) = w′(1) = 0
(1.5)

where

r(x) =
∫
Y ∗(x)

{
1− ∂X(x)

∂y1
(y1, y2)

}
dy1dy2,

s(x) = |Y ∗(x)|
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and X(x) is a convenient auxiliary harmonic function defined in the representative basic cell Y ∗(x), which
depends on G(x, ·), x ∈ (0, 1), and it is given by

Y ∗(x) = {(y1, y2) ∈ R2 | 0 < y1 < l, 0 < y2 < G(x, y1)}.
The restricted case where the function Gε(x) = G(x/ε) for some l-periodic smooth function G can be
addressed by somehow standard techniques in homogenization theory, as developed in [6, 8, 13]. We refer to
[3] for a complete analysis of this case for a semilinear parabolic problem.

In this work, we are interested in addressing the case α > 1 in (1.3), where none of the techniques used
to solve the previous ones apply. In particular, we do not use any extension operator for the convergence
proof. Indeed, we will be able to show how the geometry of the boundary oscillations affect the limiting
equation, see Theorem 2.1, Theorem 2.5. See also Corollary 2.3 for a very interesting interpretation of the
limiting equation and to see how the geometry of the unit cell affect the limit equation in the case of periodic
oscillations.

In Section 2 we give precise definitions of the two types of thin domains we are considering. One of them is
the one described in this introduction. The other type is a “comb-like” thin domain, which can be visualize
in Figure 2. We also state clearly the two main results we prove, Theorem 2.1 and Theorem 2.5.

The short Section 3 states a technical result which will be used later in the proof.
In Section 4 we analyze the type of thin domains which are given as a region between two graphs as in

(1.2).
In Section 5 we analyze the other type of thin domains, that we have denoted as a “comb-like” thin

domain.
We also would like to observe that although we will treat the Neumann boundary condition problem, we

may also impose different conditions in the lateral boundaries of the thin domain Rε, while preserving the
Neumann type boundary condition in the upper and lower boundary. Indeed, we may consider conditions
of the Dirichlet type, wε = 0, or even Robin, ∂wε

∂N + βwε = 0 in the lateral boundaries of the problem (1.1).
The limit problem will preserve this boundary condition.

2. Basic facts, notation and main results

We will consider two different types of thin domains. One of them will be given as the region between the
graphs of two functions and the other will consists of an autoreplicating structure with appropriate scaling
rates which resembles a comb structure. We present now the main definitions, basic facts and results on
both cases.

Type I. Thin domain as the region between two graphs. Let us consider a one parameter family of
functions Gε : (0, 1)→ [0,∞), ε ∈ (0, ε0) for some ε0 > 0, and a function b : (0, 1) 7→ (0,∞). We will assume
the following hypotheses on functions b and Gε:

(H1) There exist two positive constants b0, b1 such that 0 < b0 ≤ b(x) ≤ b1 for all x ∈ (0, 1) and the
function b is piecewise C1. .

(H2) The functions Gε(·) are of the type Gε(x) = G(x, x/εα), with α > 1, where the function

G : [0, 1]× R −→ [0,+∞)
(x, y) −→ G(x, y) (2.1)

is continuous in x, uniform in the second variable y, (that is, for each η > 0, there exists δ > 0
such that |G(x, y) − G(x′, y)| ≤ η for all x, x′ ∈ [0, 1], |x − x′| < δ, and y ∈ R). Moreover, we
suppose G(x, y) ≥ 0 is periodic in y, with a period l(x) that may depend on the first variable, that
is, G(x, y+ l(x)) = G(x, y). We also assume that l(·) is a continuous function with 0 < L′ ≤ l(x) ≤ L
for all x ∈ [0, 1].

We consider the highly oscillating thin domain Rε, which is given as the region between the graphs of the
two functions εb(·) and εGε(·), that is

Rε = {(x1, x2) ∈ R2 | x1 ∈ (0, 1), −ε b(x1) < x2 < εGε(x1)}
and we investigate the behavior of the solutions of (1.1) as ε→ 0.
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The Figure 3 below, gives us an exemple of function G in a bounded open set.
Since α > 1, we have that the upper boundary of this thin domain presents a extremely high oscillatory

behavior. More precisely, the order of the oscillations is large than the order of the amplitude and height of
the thin domain Rε with respect to the small parameter ε. Also, we get more general perturbations assuming
that the period l depends on variable x ∈ (0, 1).

Figure 3. Graph of function G in (0, 1)× (0, 3L).

To study the convergence of the solutions of (1.1), we consider the equivalent linear elliptic problem
−∂

2uε

∂x1
2 −

1
ε2
∂2uε

∂x2
2 + uε = f ε in Ωε

∂uε

∂x1
νε1 +

1
ε2
∂uε

∂x2
νε2 = 0 on ∂Ωε

(2.2)

where f ε ∈ L2(Ωε) satisfies
‖f ε‖L2(Ωε) ≤ C (2.3)

for some C > 0 independent of ε, and now, νε = (νε1, ν
ε
2) is the outward unit normal to ∂Ωε, and Ωε ⊂ R2 is

a highly oscillating domain given by

Ωε = {(x1, x2) ∈ R2 | x1 ∈ (0, 1), −b(x1) < x2 < Gε(x1)}. (2.4)

Note that the equivalence between (1.1) and (2.2) is easily obtained by changing the scale of the thin domain
Rε in the y-direction through the simple transformation (x, y)→ (x, εy), (see [2, 10] for more details). Thus,
we have a domain which is not thin anymore but presents very wild oscillatory behavior at the top boundary,
although the presence of a high diffusion coefficient in front of the derivative with respect the second variable
decreases the effect of the high oscillations.

We also mention the works [1, 7, 9] that analyse elliptic problems in domains related to Ωε but the fact
that in our case we allow very high diffusion in the y-direction with distinct oscillations makes our analysis
and results different from these other papers.

Now we are in contidion to state our main result whose proof will be presented in section 4.2.

Theorem 2.1. Assume that f ε ∈ L2(Ωε) satisfies ‖f ε‖L2(Ωε) ≤ C and the function f̂ ε(x) =
∫ Gε(x)

−b(x)
f(x, y) dy

satisfies that f̂ ε ⇀ f̂ , w-L2(0, 1). Let uε be the unique solution of (2.2) and G0 be the function given by

G0(x) = min
y∈R

G(x, y) ≥ 0. (2.5)

Then, if u0(x1) is the unique weak solution of the Neumann problem∫ 1

0

{(
b(x) +G0(x)

)
ux(x)ϕx(x) + p(x)u(x)ϕ(x)

}
dx =

∫ 1

0

f̂(x)ϕdx, ∀ϕ ∈ H1(0, 1) (2.6)
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where p(x) is the function defined as follows:

p(x) =
1
l(x)

∫ l(x)

0

(
b(x) +G(x, y)

)
dy = b(x) +

1
l(x)

∫ l(x)

0

G(x, y) dy, for all x ∈ (0, 1),

we have
‖uε − u0‖L2(Ωε)

ε→0−→ 0.

Moreover, if we denote by Ω0 = {(x1, x2) ∈ R2 | x1 ∈ (0, 1), −b(x1) < x2 < G0(x1)} ⊂ Ωε then,

uε ⇀ u0 ω −H1(Ω0)

Remark 2.2. The functions b and G0 defined in (H1) and (2.5) respectively, are associated to the part of
the domain Ωε that does not oscillate as the parameter ε goes to zero, and have an important role in the
limit problem (2.6). Indeed, if we assume that the period, the amplitude and the profile of the domain are
constant with respect to x ∈ (0, 1), we get the nice result announced below.

Corollary 2.3. If we have G(x, y) = G(y) an L-periodic function with miny∈R G(y) = 0 and b(x) = b a
constant function, then, the homogenized limit is given by the equation with constant coefficients:{

−du′′ + u = f, (0, 1)

u′(0) = u′(1) = 0
(2.7)

where the diffusion coefficient is given by

d =
b

b+ 1
L

∫ L
0
G(y) dy

=
Lb

Lb+
∫ L

0
G(y) dy

=
Area of the non oscillating part of the unit cell

Total area of the unit cell
.

Remark 2.4. In Corollary 2.3 the constant Lb represents the area of the unit cell which correspond to the
part which is non oscillating and Lb+

∫ L
0
G(y) dy represents the total area of the unit cell.

Type II. Comb-like thin domain. We consider now another interesting type of thin domain. Consider

Rε = Int
(
Rε
− ∪ Rε

+

)
where

Rε− = {(x1, x2) | 0 < x1 < 1,−εb(x1) < x2 < 0},
with b given as in the previous case (see hypothesis (H1)), and

Rε+ = ∪Nεn=1R
ε
n,+,

where
Rεn,+ = {(nLεα + εαx1, εx2) | (x1, x2) ∈ Q0}

where Q0 ⊂ (0, L)× (0, G) is a fixed Lipschitz domain satisfying the following:
(HQ) if Γ0 = ∂Q0 ∩{x2 = 0} and if we consider e1(Q0) the first eigenvalue of the operator −∆ in Q0 with

homogeneous Dirichlet boundary condition in Γ0 and homogeneous Neumann boundary condition
in ∂Q0 \ Γ0, then e1(Q0) > 0.

Observe that if Q0 is connected and Γ0 6= ∅ then (HQ) is satisfied. But there are cases where Q0 is
disconnected ant still (HQ) holds.

As we have done in the previous case, let us define Ωε = {(x1, x2) | (x1, εx2) ∈ Rε} so that,

Ωε = Int
(
Ω− ∪ Ωε+

)
,

Ω− = {(x1, x2) | 0 < x1 < 1,−b(x1) < x2 < 0},
Ωε+ = ∪Nεn=1Ωεn,+,

where
Ωεn,+ = {(nLεα + εαx1, x2) | (x1, x2) ∈ Q0}.



6 J. M. ARRIETA AND M.C.PEREIRA

We also consider the equivalent linear elliptic problem
−∂

2uε

∂x1
2 −

1
ε2
∂2uε

∂x2
2 + uε = f ε in Ωε

∂uε

∂x1
νε1 +

1
ε2
∂uε

∂x2
νε2 = 0 on ∂Ωε

(2.8)

Under this conditions, we may get the following result.

Theorem 2.5. Let uε be the unique solution of (2.2). Assume that f ε ∈ L2(Ωε) satisfies ‖f ε‖L2(Ωε) ≤ C

and the function f̂ ε(x) =
∫
Sε(x)

f ε(x, y) dy satisfies that f̂ ε ⇀ f̂ , w-L2(0, 1) where Sε(x) = {y | (x, y) ∈ Ωε},
that is, the section of the domain Ωε at the point x ∈ (0, 1).

Then, if u0(x1) is the unique weak solution of the Neumann problem∫ 1

0

{
b(x) ux(x)ϕx(x) + q(x)u(x)ϕ(x)

}
dx =

∫ 1

0

f̂(x)ϕdx, ∀ϕ ∈ H1(0, 1)

where q(x) is the function given by

q(x) =
|Q0|
L

+ b(x1) ∀x1 ∈ (0, 1),

we have
‖uε − u0‖L2(Ωε)

ε→0−→ 0.
Moreover,

uε ⇀ u0 ω −H1(Ω−).

3. An important estimate

In this section we show several basic estimates on the solutions of certain elliptics pde’s posed in rectangles
of the type

Qε = {(x, y) ∈ R2 | − εα < x < εα, 0 < y < 1}
with α > 1. As a matter of fact, for u0(·) ∈ H1(−εα, εα), we define the function uε(x, y) as the unique
solution of 

−∂
2uε

∂x2 −
1
ε2
∂2uε

∂y2 = 0 in Qε,

u(x, 0) = u0(x), on Γε,
∂u

∂ν
= 0, on ∂Qε \ Γε

(3.1)

where ν is the outward unit normal to ∂Qε and

Γε = {(x, 0) ∈ R2 | − εα < x < εα}.

We have the following,

Lemma 3.1. With the notation from above, if we denote by ū0 the average of u0 in Γε, that is

ū0 =
1

2εα

∫ εα

−εα
u0(x) dx (3.2)

then there exists a constant C, independent of ε and u0, such that∫ εα

−εα
|uε(x, y)− ū0|2 dx ≤ C exp

{
− 2yπ
εα−1

}
‖u0‖2L2(−εα,εα) (3.3)

∫ 1

0

∫ εα

−εα
|u(x, y)− ū0|2 dxdy ≤ Cεα−1‖u0‖2L2(−εα,εα) (3.4)
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and ∥∥∥∥∂u∂x
∥∥∥∥2

L2(Qε)

+
1
ε2

∥∥∥∥∂u∂y
∥∥∥∥2

L2(Qε)

≤ Cεα−1

∥∥∥∥∂u0

∂x

∥∥∥∥2

L2(−εα,εα)

. (3.5)

Proof. The proof of this result is based in the known fact that the solution of the problem above can be
found explicitely and admits a Fourier decomposition of the form

uε(x, y) =
1

2εα

∫ εα

−εα
u0(x)dx+

∞∑
k=1

(u0, ϕ
ε
n)ϕεn(x)

cosh(nπ(1−y)
εα−1 )

cosh( nπ
εα−1 )

(3.6)

where ϕεn(x) = ε−α/2 cos(nπxεα ), n = 1, 2, . . . , and (u0, ϕ
ε
n) = (u0, ϕ

ε
n)L2(−εα,εα). �

Remark 3.2. Observe that in particular, estimate (3.5) implies that

min
u∈V

{∥∥∥∥∂u∂x
∥∥∥∥2

L2(Qε)

+
1
ε2

∥∥∥∥∂u∂y
∥∥∥∥2

L2(Qε)

}
≤ Cεα−1

∥∥∥∥∂u0

∂x

∥∥∥∥2

L2(−εα,εα)

where V = {u ∈ H1(Qε) |u = u0 in Γε}.

4. Thin domains as a region between graphs.

In this section we consider Type I thin domains and provide a proof of Theorem 2.1.
We will start analyzing in detail the structure of the domain Ωε as a preparation for the proof of our

result.

4.1. The one parameter family Gε. In this subsection we obtain some properties and a convenient
approximation to the parameter family Gε that we will use in the proof of the main result Theorem 2.1.

From (H2) we have that there exists a positive constant G1 such that

0 ≤ Gε(x) ≤ G1, ∀x ∈ (0, 1), ∀ε ∈ (0, ε0). (4.1)

Moreover, for each x ∈ [0, 1], we consider the function

G0(x) = min
y∈R

G(x, y) ≥ 0. (4.2)

We show that G0(·) is a continuous function in [0, 1]. Indeed, we will prove that

|G0(x)−G0(x′)| ≤ sup
y∈R
|G(x, y)−G(x′, y)| ∀x, x′ ∈ [0, 1]. (4.3)

Consequently, the continuity of G0 follows from the uniform continuity of G in y and inequality (4.3).
Thus, let us prove (4.3). Given x and x′ ∈ [0, 1], there exist y(x) and y(x′) ∈ R such that G0(x) =

G(x, y(x)) and G0(x′) = G(x′, y(x′)). On the one hand, we have

G0(x)−G0(x′) = G0(x)−G(x, y(x′)) +G(x, y(x′))−G(x′, y(x′)) ≤ G(x, y(x′))−G(x′, y(x′)). (4.4)

In a completely symmetric fashion we also obtain

G0(x′)−G0(x) ≤ G(x′, y(x))−G(x, y(x)). (4.5)

Consequently, we obtain (4.3) from (4.4) and (4.5).
Now, let us denote by Nε the largest integer such that NεLεα < 1, where L is given in hypothesis (H2).

Observe that Nε ∼ L−1ε−α. Let

Gn,ε = min
x∈[(n−1)Lεα,nLεα]

G
(
x,

x

εα

)
, n = 1, 2 . . . , Nε (4.6)

and γn,ε ∈ [(n − 1)Lεα, nLεα] a point where the minimum (4.6) is attained, that is, G(γn,ε,
γn,ε
εα ) = Gn,ε

where γn,ε does not need to be uniquely defined. By extension, let us denote by γ0,ε = 0 and γNε+1,ε = 1.
Note that the set

{γ0,ε, γ1,ε, ..., γNε+1,ε} (4.7)
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defines a partition for the unit interval [0, 1]. Also, we have by definition that the segments

{(γn,ε, x2) | Gn,ε < x2 < G1} ∩ Ωε = ∅,

for all n = 1, 2, . . . , Nε.
Consider also the step function

G̃ε0(x) =

 G1,ε, x ∈ [0, γ1,ε]
max{Gn,ε, Gn+1,ε}, x ∈ [γn,ε, γn+1,ε], n = 1, 2 . . . , Nε − 1
GNε,ε, x ∈ [γNε,ε, 1]

. (4.8)

Lemma 4.1. We have
‖G0 − G̃ε0‖L∞(0,1) → 0 as ε→ 0.

Proof. It follows from (H2) and (4.3) that, for each η > 0, there exists ε0 > 0 such that

max {|G(x, y)−G(x′, y)|, |G0(x)−G0(x′)|} < η (4.9)

whenever |x− x′| < 2 εα0 L and y ∈ R. Now, for all x ∈ [γn,ε, γn+1,ε] we have

G̃ε0(x)−G0(x) = max {Gn,ε, Gn+1,ε} −G0(x).

Without loss of generality, we may assume G̃ε0(x) = Gn,ε, that is, Gn,ε ≥ Gn+1,ε. Thus,

G̃ε0(x)−G0(x) = Gn,ε −G0(x)
= G(γn,ε, γn,ε/εα)−G0(x)
= G(γn,ε, γn,ε/εα)−G0(γn,ε) +G0(γn,ε)−G0(x). (4.10)

It follows from definition of G0 in (4.2), that

G(γn,ε, γn,ε/εα)−G0(γn,ε) ≥ 0.

Also, since G(x, ·) is l(x)-periodic with |l(x)| ≤ L, we have that there exist y(γn,ε) ∈ [0, l(γn,ε)] and k(γn,ε) ∈
N with y(γn,ε) + k(γn,ε) l(γn,ε) ∈ [(n− 1)L εα, nL εα], such that

G0(γn,ε) = G(γn,ε, y(γn,ε)) = G(γn,ε, y(γn,ε) + k(γn,ε) l(γn,ε)). (4.11)

Consequently, we get from (4.6) and (4.11) that

G(γn,ε, γn,ε/εα)−G0(γn,ε) = G(γn,ε, γn,ε/εα)−G((y + k l) εα, (y + k l) εα/εα)
+G((y + k l) εα, (y + k l) εα/εα)−G(γn,ε, (y + k l) εα/εα)

≤ G((y + k l) εα, (y + k l) εα/εα)−G(γn,ε, (y + k l) εα/εα) (4.12)

since
G(γn,ε, γn,ε/εα)−G((y + k l) εα, (y + k l) εα/εα) ≤ 0.

Therefore, due to (4.10), (4.12) and (4.9), we obtain

|G̃ε0(x)−G0(x)| ≤ G((y + k l) εα, (y + k l) εα/εα)−G(γn,ε, (y + k l) εα/εα) +G0(γn,ε)−G0(x) < 2η

whenever x ∈ [γn,ε, γn+1,ε].
Then, since x ∈ [0, 1] is arbitrary and ∪Nεn=1[γn,ε, γn+1,ε] = [0, 1], we conclude the proof. �

The following result will also be needed.

Lemma 4.2. We have the following

Gε(·)
ε→0
⇀

1
l(·)

∫ l(·)

0

G(·, s)ds w∗ − L∞(0, 1). (4.13)
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Proof. We have to prove∫ 1

0

{
Gε(x)− 1

l(x)

∫ l(x)

0

G(x, s) ds

}
ϕ(x) dx→ 0 as ε→ 0 (4.14)

for all ϕ ∈ L1(0, 1).
Since the set of step function is dense in L1(0, 1), and any step function is a linear combination of

characteristic functions, we only need to show (4.14) for characteristic functions. Then, for 0 ≤ e < f ≤ 1
we consider the following characteristic function

ϕ(x) =
{

1 x ∈ (e, f)
0 x /∈ (e, f) .

So, we have to estimate the integral

Ie,f =
∫ f

e

{
Gε(x)− 1

l(x)

∫ l(x)

0

G(x, s) ds

}
dx

as ε > 0 goes to zero.
For this, let η > 0 be a small number and let {e = x0, x1, ..., xn = f} be a partition for the interval (e, f),

and x̂i be a fixed point in the interval Ji = [xi−1, xi], i = 1, ..., n, such that

sup
i

sup
x∈Ji, y∈R

|G(x, y)−G(x̂i, y)| < η.

Observe that we can write

Ie,f =
5∑
i=1

Iie,f

where

I1
e,f =

n∑
i=1

∫
Ji

{G(x, x/εα)−G(x̂i, x/εα)} dx

I2
e,f =

n∑
i=1

∫
Ji

{
G(x̂i, x/εα)− 1

l(x̂i)

∫ l(x̂i)

0

G(x̂i, s) ds

}
dx

I3
e,f =

n∑
i=1

∫
Ji

{
1

l(x̂i)

∫ l(x̂i)

0

G(x̂i, s) ds−
1

l(x̂i)

∫ l(x̂i)

0

G(x, s) ds

}
dx

I4
e,f =

n∑
i=1

∫
Ji

{
1

l(x̂i)

∫ l(x̂i)

0

G(x, s) ds− 1
l(x̂i)

∫ l(x)

0

G(x, s) ds

}
dx

I5
e,f =

n∑
i=1

∫
Ji

{
1

l(x̂i)

∫ l(x)

0

G(x, s) ds− 1
l(x)

∫ l(x)

0

G(x, s) ds

}
dx.

It is easy to estimate the integrals I1
e,f , I3

e,f , I4
e,f and I5

e,f to obtain

|I1
e,f | ≤ η (f − e)
|I3
e,f | ≤ η (f − e)

|I4
e,f | ≤ G1 ‖l̂η − l‖L∞(0,1) (f − e)

|I5
e,f | ≤ G1

(
L/L′

2
)
‖l̂η − l‖L∞(0,1) (f − e)

(4.15)

where G1, L and L′ are the positive constants given by hypothesis (H2), and the function l̂η is the step
function defined for each η > 0 by

l̂η(x) = l(xi) as xi ∈ Ji.



10 J. M. ARRIETA AND M.C.PEREIRA

Since the inequalities (4.15) do not depend on ε > 0, and ‖l̂η − l‖L∞(0,1) → 0 as η → 0 uniformly in ε, we
have that I1

e,f , I3
e,f , I4

e,f and I5
e,f go to zero as η → 0 uniformly in ε > 0.

Hence, to conclude the proof, we just evaluate the integral I2
e,f . But this is a straightforward application

of the Average Theorem since x̂i is a fixed point in Ji, and G(x̂i, ·) is a l(x̂i)-periodic function. Indeed,

I2
e,f =

n∑
i=1

∫
Ji

{
G(x̂i, x/εα)− 1

l(x̂i)

∫ l(x̂i)

0

G(x̂i, s) ds

}
dx→ 0 as ε→ 0.

�

4.2. Proof of Theorem 2.1. Here, we give a proof of the main result, Theorem 2.1.

Proof. The variational formulation of (2.2) is: find uε ∈ H1(Ωε) such that∫
Ωε

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2
+ uεϕ

}
dx1dx2 =

∫
Ωε
f εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (4.16)

Taking ϕ = uε in expression (4.16) and using that ‖f ε‖L2(Ωε) ≤ C, we easily obtain the a priori bounds

‖uε‖L2(Ωε),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ωε)

and
1
ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ C. (4.17)

In particular, we have ∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ εC → 0 as ε→ 0.

Let us observe that domain Ωε consists of two main parts. One of them is a highly oscillating domain Ωε+
and the other one is a non oscillating domain Ωε−. To define these domains, we use the partition for the unit
interval (0, 1) given by (4.7) and the step function G̃ε0 defined in (4.8). So, we consider the following open
sets

Ωε− = {(x1, x2) ∈ R2 |x1 ∈ (0, 1), −b(x1) < x2 < G̃ε0(x1)}

Ωε+ = {(x1, x2) ∈ R2 |x1 ∈ (0, 1), G̃ε0(x1) < x2 < Gε(x1)}.
(4.18)

Notice that
Ωε = Int

(
Ωε+ ∪ Ωε−

)
.

Observe also that with the function G0 defined by (4.2) we may also consider the set

Ω0 = {(x1, x2) ∈ R2 |x1 ∈ (0, 1), −b(x1) < x2 < G0(x1)}.

which satisfies Ω0 ⊂ Ωε.
We want to pass to the limit in the variational formulation (4.16) for certain appropriately chosen test

functions. In order to accomplish this, we rewrite it as follows∫
Ωε+

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2

}
dx1dx2 +

∫
Ωε−

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2

}
dx1dx2

+
∫

Ωε
uεϕdx1dx2 =

∫
Ωε
f εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (4.19)

Now, we pass to the limit in the different functions that form the integrands of (4.19).

(a). Limit of uε in L2.
It follows from (4.17) that uε|Ω0 ∈ H1(Ω0) and satisfies for all ε > 0

‖uε‖L2(Ω0),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ω0)

and
1
ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ω0)

≤ C.
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Then, we can extract a subsequence of {uε|Ω0} ⊂ H1(Ω0), denoted again by uε, such that

uε ⇀ u0 w −H1(Ω0)

uε → u0 s−Hs(Ω0) for all s ∈ [0, 1) and
∂uε

∂x2
→ 0 s− L2(Ω0)

(4.20)

as ε→ 0 for some u0 ∈ H1(Ω0).
A consequence of the limits (4.20) is that u0(x1, x2) does not depend on the variable x2. More precisely,

∂u0

∂x2
(x1, x2) = 0 a.e. Ω0. (4.21)

Also, due to (4.20), we have that the restriction of uε to the coordinate axis x1 converges to u0. That is,

uε|Γ → u0 s−Hs(Γ)

for all s ∈ [0, 1/2) where Γ = {(x1, 0) ∈ R2 |x1 ∈ (0, 1)}. Consequently, we obtain

‖uε − u0‖L2(Γ) → 0 as ε→ 0. (4.22)

Now, we can see that (4.22) implies the L2-convergence of uε to u0, that is

‖uε − u0‖L2(Ωε) → 0 as ε→ 0. (4.23)

In fact, it follows from (4.22) that

‖uε(x1, 0)− u0(x1)‖2L2(Ωε) =
∫ 1

0

∫ Gε(x1)

−b(x1)

|uε(x1, 0)− u0(x1)|2 dx2dx1

≤ C(G, b) ‖uε − u0‖L2(Γ)

→ 0 as ε→ 0

where C(G, b) is a generic constant that depends on the functions G and b. Also,

uε(x1, x2)− uε(x1, 0) =
∫ x2

0

∂uε

∂x2
(x1, s) ds

and with Hölder inequality,

|uε(x1, x2)− uε(x1, 0)|2 ≤

(∫ x2

0

∣∣∣∣∂uε∂x2
(x1, s)

∣∣∣∣2 ds
)
|x2|.

Hence, integrating in Ωε and using (4.17) to get

‖uε(x1, x2)− uε(x1, 0)‖2L2(Ωε) =
∫ 1

0

∫ Gε(x1)

−b(x1)

|uε(x1, x2)− uε(x1, 0)|2 dx1dx2

≤
∫ 1

0

∫ Gε(x1)

−b(x1)

(∫ x2

0

∣∣∣∣∂uε∂x2
(x1, s)

∣∣∣∣2 ds
)
|x2| dx2dx1 ≤ C(G, b)

∥∥∥∥∂uε∂x2

∥∥∥∥2

L2(Ωε)

≤ ε Ĉ(G, b)→ 0 as ε→ 0.

Therefore,

‖uε − u0‖L2(Ωε) ≤ ‖uε(x1, x2)− uε(x1, 0)‖L2(Ωε) + ‖uε(x1, 0)− u0(x1)‖L2(Ωε)

→ 0 as ε→ 0.

(b). Limit of f ε.
Since ‖f ε‖L2(Ωε) ≤ C independent of ε, we have the function f̂ ε defined by

f̂ ε(x1) ≡
∫ Gε(x1)

−b(x1)

f ε(x1, x2)dx2 (4.24)
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belongs to L2(0, 1) and satisfies ‖f̂ ε‖L2(0,1) ≤ C(G, b) for some constant C(G, b) independent of ε. Hence,
via subsequences, we have the existence of a function f̂ = f̂(x1) ∈ L2(0, 1) such that

f̂ ε ⇀ f̂ w − L2(0, 1). (4.25)

Remark 4.3. Observe that in the case where f ε(x1, x2) = f(x1) then

f̂ ε(x1) = (G(x1, x1/ε
α) + b(x1)) f(x1) ⇀ p(x1) f(x1) w∗ − L∞(0, 1)

where the function p is given by

p(x) =
1
l(x)

∫ l(x)

0

G(x, s) ds+ b(x), (4.26)

which is the weak ∗-L∞(0, 1) limit of Gε(x) obtained in (4.13). Consequently, we have that

f̂(x) = p(x) f(x) x ∈ (0, 1).

(c). Test functions.
Here, we define suitable test functions that will allow us to pass the limit in the variational formulation

(4.19). For this, we use the definition of the open sets Ωε− and Ωε+ given in (4.18).
For each φ ∈ H1(0, 1) and ε > 0, we define the following test functions in H1(Ωε)

ϕε(x1, x2) =
{
Xε
n(x1, x2), (x1, x2) ∈ Ωε+ ∩Qεn, n = 1, 2, . . .

φ(x1), (x1, x2) ∈ Ωε−
(4.27)

where Qεn is the rectangle (see Figure 4)

Qεn = {(x1, x2) | γn,ε < x1 < γn+1,ε, G̃
ε
0(x1) < x2 < G1}

and the function Xε
n is the solution of the problem

−∂
2Xε

∂x2
1

− 1
ε2
∂2Xε

∂x2
2

= 0, in Qεn

∂Xε

∂N ε
= 0, on ∂Qεn\Γεn

Xε(x1, x2) = φ(x1), on Γεn

(4.28)

where Γεn is the base of the rectangle, that is,

Γεn = {(x1, G̃
ε
0(x1)) : γn,ε ≤ x1 ≤ γn+1,ε}.

Γn-1,Ε Γn,Ε Γn+1,Ε Γn+2,Ε

Qn
ΕQn-1

Ε Qn+1
Ε

Figure 4. Rectangle Qεn.
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It follows from estimate (3.5) that∥∥∥∥∂2Xε

∂x2
1

∥∥∥∥2

L2(Qεn)

+
1
ε2

∥∥∥∥∂2Xε

∂x2
2

∥∥∥∥2

L2(Qεn)

≤ Cεα−1‖φ′‖2L2(γn,ε,γn+1,ε)
. (4.29)

Moreover, if we call Qε = ∪Nεi=1Q
ε
n, we get Ωε+ = Qε ∩ Ωε, and we can define the function Xε in Ωε+ by

Xε(x1, x2) = Xε
n(x1, x2) as (x1, x2) ∈ Qεn ∩ Ωε.

Hence, we have by (4.29) that Xε ∈ H1(Ωε+) and satisfies the following inequality∥∥∥∥∂2Xε

∂x2
1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂2Xε

∂x2
2

∥∥∥∥2

L2(Ωε+)

≤
Nε∑
i=1

(∥∥∥∥∂2Xε

∂x2
1

∥∥∥∥2

L2(Qεn)

+
1
ε2

∥∥∥∥∂2Xε

∂x2
2

∥∥∥∥2

L2(Qεn)

)

≤
Nε∑
i=1

C εα−1 ‖φ′‖2L2(γε,n,γn+1,ε)
≤ C εα−1 ‖φ′‖2L2(0,1) .

(4.30)

Furthermore, we can show that
‖ϕε − φ‖L2(Ωε) → 0 as ε→ 0. (4.31)

We can argue as in (4.23). Indeed, since

ϕε(x1, x2)− φ(x1) = ϕε(x1, x2)− ϕε(x1, 0) =
∫ x2

0

∂ϕε

∂x2
(x1, s) ds,

we have by (4.27) and (4.30) that

‖ϕε − φ‖2L2(Ωε) ≤ C(G, b)
∥∥∥∥∂ϕε∂x2

∥∥∥∥2

L2(Ωε)

≤ C(G, b)
∥∥∥∥∂Xε

∂x2

∥∥∥∥2

L2(Qε∩Ωε)

≤ Ĉ(G, b) ε1+α ‖φ′‖2L2(0,1) → 0 as ε→ 0.

(d). Passing to the limit in the weak formulation.
Now, we pass to the limit in the variational formulation of the problem using the test functions ϕε defined

above. For this, we analyze the different functions that form the integrands in (4.19).
• First integrand: ∫

Ωε+

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 → 0 as ε→ 0. (4.32)

Indeed, it follows from (4.30) and α > 0 that∫
Ωε+

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 =

∫
Ωε+

{∂uε
∂x1

∂Xε

∂x1
+

1
ε2
∂uε

∂x2

∂Xε

∂x2

}
dx1dx2

≤

(∫
Ωεu

{(∂uε
∂x1

)2

+
1
ε2

(
∂uε

∂x2

)2 }
dx1dx2

)1/2(∫
Ωε+

{(∂Xε

∂x1

)2

+
1
ε2

(
∂Xε

∂x2

)2 }
dx1dx2

)1/2

≤ C ε(α−1)/2 ‖uε‖H1(Ωε) ‖φ′‖L2(0,1) → 0 as ε→ 0. (4.33)

• Second integrand:∫
Ωε−

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 →

∫ 1

0

(G0(x1) + b(x1)) u′0(x1)φ′(x1) dx1 as ε→ 0. (4.34)

To prove this, observe that using (4.27), we obtain
∂ϕε

∂x1

∣∣∣
Ωε−

=
∂φ

∂x1
= φ′ and

∂ϕε

∂x2

∣∣∣
Ωε−

=
∂φ

∂x2
= 0

for all ε > 0. Hence, we have that∫
Ωε−

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 =

∫
Ωε−

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2



14 J. M. ARRIETA AND M.C.PEREIRA

=
∫

Ω0

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2 −

∫
Ω0\Ωε−

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2

+
∫

Ωε−\Ω0

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2. (4.35)

Due to (4.20), we can pass to the limit as ε → 0 in the first integral of the right side of (4.35) to
obtain ∫

Ω0

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2 →

∫
Ω0

u′0(x1)φ′(x1) dx1dx2.

Also, we have that∫
Ω0

u′0(x1)φ′(x1) dx1dx2 =
∫ 1

0

u′0(x1)φ′(x1)

(∫ G0(x1)

−b(x1)

dx2

)
dx1

=
∫ 1

0

(G0(x1) + b(x1)) u′0(x1)φ′(x1) dx1. (4.36)

Now, we will get (4.34) if we prove that the remaining integrals of (4.35) tend to zero as ε → 0.
We evaluate one of them, the other calculus is similar.

From (4.17), (4.18) and Remark 4.1, we have that∫
Ωε−\Ω0

∂uε

∂x1
(x1, x2)φ′(x1) dx1dx2 ≤

∥∥∥∥∂uε∂x1

∥∥∥∥
L2(Ωε)

‖φ′‖L2(Ωε−\Ω0)

≤ C

{∫ 1

0

φ′(x1)2
∣∣∣G0(x1)− G̃ε0(x1)

∣∣∣ dx1

}1/2

≤ C ‖φ′‖L2(0,1) ‖G0 − G̃ε0‖
1/2
L∞(0,1)

→ 0 as ε→ 0. (4.37)

Therefore, we obtain (4.34) from (4.36) and (4.37).

• Third integrand: if p(x) is defined in (4.26) then,∫
Ωε
uε ϕε dx1dx2 →

∫ 1

0

p(x1)u0(x1)φ(x1) dx1 as ε→ 0 (4.38)

To prove (4.38), observe that∫
Ωε
uε ϕε dx1dx2 =

∫
Ωε

(uε − u0) ϕε dx1dx2 +
∫

Ωε
u0 (ϕε − φ) dx1dx2 +

∫
Ωε
u0 φdx1dx2.

From (4.23) and (4.31), we have∫
Ωε

(uε − u0) ϕε dx1dx2 → 0 and
∫

Ωε
u0 (ϕε − φ) dx1dx2 → 0, as ε→ 0

Hence, since∫
Ωε
u0(x1)φ(x1) dx1dx2 =

∫ 1

0

u0(x1)φ(x1) (Gε(x1) + b(x1)) dx1,

we get (4.38) from (4.13).
• Fourth integrand: ∫

Ωε
f ε ϕε dx1dx2 →

∫ 1

0

f̂(x1)φ(x1) dx1 as ε→ 0. (4.39)
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For this, let f̂ ∈ L2(0, 1) be the function defined in (4.24). Since∫
Ωε
f ε ϕε dx1dx2 =

∫
Ωε
f ε (ϕε − φ) dx1dx2 +

∫
Ωε
f ε φdx1dx2

and ∫
Ωε
f ε φdx1dx2 =

∫ 1

0

(∫ Gε(x1)

−b(x1)

f ε(x1, x2) dx2

)
φ(x1) dx1 =

∫ 1

0

f̂ ε(x1)φ(x1) dx1,

we get (4.39) from (2.3), (4.25) and (4.31).
Therefore, ifrom (4.32), (4.34), (4.38) and (4.39) we obtain the following limit variational formulation∫ 1

0

{(G0(x1) + b(x1)) u′0(x1)φ′(x1) + p(x1)u0(x1)φ(x1)} dx1 =
∫ 1

0

f̂(x1)φ(x1) dx1 ∀φ ∈ H1(0, 1).

(4.40)
Since this problem is well posed, we obtain that the sequence {uε}ε>0 is convergent and converges to the
unique solution u0 of (4.40). Thus we conclude the proof of Theorem 2.1. �

5. Comb-like thin domains

We consider now, Type II thin domains as described in Section 2 and provide a proof of Theorem 2.5.

Proof. We will proceed as in the previous section to show this result. We will choose appropriate test
functions to pass to the limit in the variational formulation of problem (2.8) that we rewrite it here as: find
uε ∈ H1(Ωε) such that∫

Ωε+

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2

}
dx1dx2 +

∫
Ω−

{∂uε
∂x1

∂ϕ

∂x1
+

1
ε2
∂uε

∂x2

∂ϕ

∂x2

}
dx1dx2

+
∫

Ωε
uεϕdx1dx2 =

∫
Ωε
f εϕdx1dx2, ∀ϕ ∈ H1(Ωε). (5.1)

Again, as in the previous case, taking ϕ = uε in expression (5.1) and using that ‖f ε‖L2(Ωε) ≤ C, we easily
obtain the apriori bounds

‖uε‖L2(Ωε),
∥∥∥∂uε
∂x1

∥∥∥
L2(Ωε)

and
1
ε

∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ C. (5.2)

In particular, we have ∥∥∥∂uε
∂x2

∥∥∥
L2(Ωε)

≤ εC → 0 as ε→ 0.

We extract a subsequence of {uε|Ω−} ⊂ H1(Ω−), denoted again by uε, such that

uε ⇀ u0 w −H1(Ω−)

uε → u0 s−Hs(Ω−) for all s ∈ [0, 1) and
∂uε

∂x2
→ 0 s− L2(Ω−)

(5.3)

as ε→ 0 for some u0 ∈ H1(Ω−).
As in (4.21), it follows from (5.3) that u0(x1, x2) does not depend on the variable x2 and belongs to

H1(0, 1). Indeed, we can show that
∂u0

∂x2
(x1, x2) = 0 a.e. Ω−.

(a). Limit of uε in L2(Ωε).
First, we obtain the L2-convergence of uε to u0. More precisely, we show

‖uε − u0‖L2(Ωε) → 0 as ε→ 0. (5.4)
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For this, we assume without loss of generality that

Ωε+ ⊂ {(x1, x2) ∈ R2 | x1 ∈ (0, 1), 0 < x2 < b(x1)}

and we define by ‘symmetrization’ the following function ûε in Ωε+ by

ûε(x1, x2) =
{
uε(x1,−x2), (x1, x2) ∈ Ωε+
uε(x1, x2), (x1, x2) ∈ Ω−.

(5.5)

Consequently, it follows from (5.3) that

‖ûε − u0‖L2(Ωε) → 0 as ε→ 0,

and from (5.2), we have

‖ûε‖L2(Ωε),
∥∥∥∂ûε
∂x1

∥∥∥
L2(Ωε)

and
1
ε

∥∥∥∂ûε
∂x2

∥∥∥
L2(Ωε)

≤ C. (5.6)

Let us denote by wε = uε − ûε in Ωε. It is easy to see that wε ≡ 0 in Ω− and wε satisfies

‖wε‖H1(Ωε+) = ‖uε − ûε‖H1(Ωε+) ≤ C1∥∥∥∥∂wε∂x1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂wε∂x2

∥∥∥∥2

L2(Ωε+)

+ ‖wε‖2L2(Ωε+) ≤ C2

(5.7)

Now let us show that ‖wε‖L2(Ωε) → 0 as ε → 0, that is, ‖wε‖L2(Ωε+) → 0 as ε → 0. Suppose this is not
true and assume that ‖wε‖2L2(Ωε+) ≥ c0 > 0 at least for a subsequence ε→ 0. Then we have that

J(wε) =

∥∥∥∥∂wε∂x1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂wε∂x2

∥∥∥∥2

L2(Ωε+)

+ ‖wε‖2L2(Ωε+)

‖wε‖2L2(Ωε+)

≤ C2

c0
= C.

This implies that the first eigenvalue of the problem
− ∂

2vε

∂x1
2 −

1
ε2
∂2vε

∂x2
2 + vε = λε v

ε in Ωε+

∂vε

∂x1
νε1 +

1
ε2
∂vε

∂x2
νε2 = 0 on ∂Ωε+\Γ

vε(x1, 0) = 0 on Γ

(5.8)

satisfies λε(Ωε+) ≤ C, since J is the associated Raleigh quotient and Γ ⊂ ∂Ωε+ is a nonempty open subset.
But observe that Ωε+ = ∪Nεn=1Ωεn,+ where all Ωεn,+ are disjoint and identical, except for translations. Then,

we can conclude λε(Ωε+) = λε(Ωεn,+) for all n.
Performing in Ωεn,+ the change of variables that transforms it into the fixed domain Q0, that is, (x1, x2)→

(x1/ε
α − nL, x2), we will have that λε(Ωεn,+) is the first eigenvalue of the problem

− 1
ε2α

∂2vε

∂x1
2 −

1
ε2
∂2vε

∂x2
2 + vε = λε v

ε in Q0

1
ε2α

∂vε

∂x1
νε1 +

1
ε2
∂vε

∂x2
νε2 = 0 on ∂Q0\Γ0

vε(x1, 0) = 0 on Γ0

(5.9)

and therefore,

λε(Ωε+) = min


1
ε2α

∫
Q0

∣∣∣ ∂2vε

∂x1
2

∣∣∣2 dx1dx2 + 1
ε2

∫
Q0

∣∣∣ ∂2vε

∂x2
2

∣∣∣2 dx1dx2∫
Q0
|vε|2 dx1dx2

; vε ∈ H1(Q0), vε|Γ0 = 0

 ≤ C.
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But this is impossible since λε(Ωε+) ≥ 1
ε2 e1(Q0) for α > 1 and ε ∈ (0, 1) where

e1(Q0) = min


∫
Q0

(∣∣∣ ∂2vε

∂x1
2

∣∣∣2 +
∣∣∣ ∂2vε

∂x2
2

∣∣∣2) dx1dx2∫
Q0
|vε|2 dx1dx2

; vε ∈ H1(Q0), vε|Γ0 = 0


is the first eigenvalue of the Laplace operator in Q0 with homogeneous Dirichlet boundary condition in Γ0

and Neumann everywhere else. This eigenavalue is strictly positive by hypothesis (HQ). Thus we obtain
(5.4).

(b). Test functions.
The test functions we are going to construct to pass the limit in the variational formulation (5.1) are very

similar to the ones we constructed in Type I thin domains. Take φ ∈ H1(0, 1), ε > 0 and define the following
functions in H1(Ωε):

ϕε(x1, x2) =
{
Xε
n(x1, x2), (x1, x2) ∈ Ωε+ ∩Qεn, n = 1, 2, . . . , N ε = 1

Lεα

φ(x1), (x1, x2) ∈ Ω−
(5.10)

where Qεn is the rectangle
Qεn = (nLεα, (n+ 1)Lεα)× (0, G)

and the function Xε
n is the solution of the problem

−∂
2Xε

∂x2
1

− 1
ε2
∂2Xε

∂x2
2

= 0, in Qεn

∂Xε

∂N ε
= 0, on ∂Qεn\Γεn

Xε(x1, x2) = φ(x1), on Γεn

(5.11)

where Γεn is the base of the rectangle, that is,

Γεn = (nLεα, (n+ 1)Lεα) ∩ ∂Q0.

As we showed in the previous section, we have using Lemma 3.1,∥∥∥∥∂2ϕε

∂x2
1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂2ϕε

∂x2
2

∥∥∥∥2

L2(Ωε+)

≤ C εα−1 ‖φ′‖2L2(0,1) (5.12)

which implies that

‖ϕε‖2L2(Ωε+) +
∥∥∥∥∂2ϕε

∂x2
1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂2ϕε

∂x2
2

∥∥∥∥2

L2(Ωε+)

≤ C. (5.13)

Moreover, we can show that
‖ϕε − φ‖L2(Ωε) → 0 as ε→ 0. (5.14)

We can argue as in (5.4). If it were not true, then there will exists a c0 > 0 and a sequence (that we still
denote it by ε) such that ‖ϕε − φ‖L2(Ωε) ≥ c0. But then, if we define wε = ϕε − φ, we will have that

J(wε) =

∥∥∥∥∂wε∂x1

∥∥∥∥2

L2(Ωε+)

+
1
ε2

∥∥∥∥∂wε∂x2

∥∥∥∥2

L2(Ωε+)

+ ‖wε‖2L2(Ωε+)

‖wε‖2L2(Ωε+)

≤ C

c0
= C̃

but with the same steps as we did in (a) this will contradict the fact that e1(Q0) > 0.

(c). Pass to the limit.
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Now we can pass to the limit in the variational formulation (5.1). First, we note that the convergences of∫
Ωε+

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 → 0 (5.15)

for ε→ 0 follows from (5.12) and can be obtained as in (4.32).
Also, from (5.3) and since ϕε ≡ φ in Ω−, we easily get∫

Ω−

{∂uε
∂x1

∂ϕε

∂x1
+

1
ε2
∂uε

∂x2

∂ϕε

∂x2

}
dx1dx2 →

∫ 1

0

b(x1)u′0(x1)φ′(x1) dx1 as ε→ 0. (5.16)

Let us consider now the following technical result.

Lemma 5.1. We have ∫
Sε(x1)

dx2 → q(x1) ≡ |Q0|
L

+ b(x1) w∗ − L∞(0, 1).

Proof. If we denote by χ the characteristic function of the measurable open set Q0, extended periodically
with respect to the first variable, we have by the Average Theorem that∫

Sε(x1)

dx2 =
∫ G

0

χ(x1/ε
α, x2) dx2 +

∫ 0

−b(x1)

dx2

⇀

∫ G

0

(
1
L

∫ L

0

χ(s, x2) ds

)
dx2 + b(x1) w∗ − L∞(0, 1)

=
|Q0|
L

+ b(x1) ∀x1 ∈ (0, 1).

�

Moreover,∫
Ωε
uε ϕε dx1dx2 =

∫
Ωε

(uε − u0) ϕε dx1dx2 +
∫

Ωε
u0 (ϕε − φ) dx1dx2 +

∫
Ωε
u0 φdx1dx2.

and the first two integrasl go to 0 since ‖uε − u0‖L2(Ωε) → 0 and ‖ϕε − φ‖L2(Ωε) → 0. The last integral
satisfies,∫

Ωε
u0(x1)φ(x1) dx1dx2 =

∫ 1

0

u0(x1)φ(x1)

(∫
Sε(x1)

dx2

)
dx1,→

∫ 1

0

q(x1)u0(x1)φ(x1)dx1

where we have used Lemma 5.1.
Finally, we have ∫

Ωε
f ε ϕε dx1dx2 =

∫
Ωε
f ε (ϕε − φ) dx1dx2 +

∫
Ωε
f ε φdx1dx2

but the first integral goes to 0. Moreover, with the hypothesis of the theorem, we get for the second integral∫
Ωε
f ε φdx1dx2 =

∫ 1

0

(∫
Sε(x1)

f ε(x1, x2) dx2

)
φ(x1) dx1 →

∫ 1

0

f̂(x1)φ(x1) dx1.

Therefore, we obtain from the estimates above that∫ 1

0

{b(x1)u′0(x1)φ′(x1) + q(x1)u0(x1)φ(x1)} dx1 =
∫ 1

0

f̂(x1)φ(x1) dx1 ∀φ ∈ H1(0, 1). (5.17)

Since this problem has a unique solution, then we obtain that the sequence {uε}ε>0 is convergent and
converges to the unique solution u0 of (5.17).

�
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